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A determination is made of the temperatures and concentration fields resulting from 
occurence of a multicomponent chemical reaction on the surface of a sphere moving in a gas 
at low Reynolds and Peclet numbers. It is assumed that the particle is thermally conductive, 
and that the rate of surface chemical reaction depends in an arbitrary manner on the tempera- 
ture and concentration distribution near the particle. The problem is solved by the method 
of combining asymptotic expansions in small Peclet numbers. Approximate analytical formulas 
are obtained for the mean Sherwood and Nusselt numbers. 

The concentration distribution produced by a reacting particle moving in a gas in the 
diffusion reaction regime was obtained previously [1-4] for the isothermal case, and also 
for surface reactions of first [5-7], second [5], and arbitrary orders [8]. In [9] the tem- 
perature field without and within the thermally-conductive particle was determined for the 
case of complete reagent absorption on the surface. 

i. Formulation of the Problem 

We will consider convective diffusion to a thermally conductive reacting sphere, with a 
translational Stokes flow passing over it, and a nonisothermal multicomponent chemical reac- 
tion occurring on the surface, the reaction rate being dependent on temperature and concen- 
tration in an arbitrary manner. It is assumed that the presence of the surface reaction does 
not affect flow and particle parameters. 

The dimensionless equations of convective diffusion and thermal conductivity, together 

with the boundary conditions expressing homogeneity of temperature and concentrations far 
from the particle, continuity of temperature and heat balance on the surface, the "reaction 
law," and the finiteness of temperature at the center of the particle have the form [9, i0] 

Ac.~ = P e , ~ r - ~ J ( r  c.~) ( i  < r < oo), m ---- i . . . . .  M ;  (i. i) 
A T  = Pe0r-~-.f0~, T) ( l  < r < oc) ;  ( 1 . 2 )  
At =0 (0~r<1); (1.3) 

r - - ~  oo,  cm - ~  0, T - - *  (!; (1.4) 
r === ~, T = l; (1.5) 
1" = 1, iJ:'.,/Or == fm(Q . . . . .  c ~ ,  T);  ( 1 . 6 )  

3I 
Dr 8 == h,,i,~ (c 1, T); ( 1 . 7 )  r : [~ o - 7 - -  ~ . �9 ....C/,f, 

7)L~ I 

r = 0, I l l <  oo; ( 1 . 8 )  

~[:__= t " ~ 3 l ) (  l ~l~) ' j ( ~ . ,  ~q O(~Lz) ( 1 . 9 )  ~ { r - - - ~ r - !  ~ - -  " ' - -  O ( r , ~ ) '  

c , , ~ : : c , , : r  1 " * = = t ' : , ( 1 - -  T), t* =: T . ~ ( l - - t ) ,  

Pc,,, == aUD~ l, P e o  : e.UT~ -1 ,  6 ~: )~1~. -1 ,  h,~ -:: c,,,~D,r, Hr~ O.T~) -x, 

/r~ (cI, - . . ,  cM, I ' )  ~ -  a (co,,~,D,,)-~/~',, (c , ,  . . . ,  CM, r * ) ,  p. = cos O, 

where c~ are the reagent concentrations; T* and t* are the temperatures in the gas flow and 
inside the particle; cm~ and ]'~ are the concentrations and temperature at infinity; Peo 
and Pe m are the thermal and diffusion Peclet numbers; a is the particle radius; U is the flow 
velocity far from the particle; D m are the diffusion coefficients; % is the thermal diffu- 
sivity; ~ is the flow flunction; H m is the heat of the m-th reaction; F m is the rate of the 
surface reaction; XI and X are the thermal conductivity coefficients of particle and gas); M 
is the number of reagents participating in the reaction); r, e is a spherical coordinate 
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system fixed to the particle; a(~p, x)/O(r. ~) is the Jacobian of the functions ~ and x. 

2. Method of Solution. Heat and Mass Flux to Particle Surface. 

We will study the boundary problem Eqs. (1.1)--(1.9) by the method of combinable asymptot- 
ic expansions in small Peclet numbers [1-9]. It will be assumed that 

~'--+ 0, Pe,, := ~'Q,,, Q,,, ::: o(1) (m ::= (I, 1 . . . . .  M) 

(such a situation is typical of gases, where 0.5 ~ Pem/P% ~ 2) and the entire flow region will 
be divided into two subregions: an inner Qi = {I < r ~ O(e-1)} and an outer ~ = {O(e -I) < r} 
[1-9]. As usual, in the outer region a "compressed" coordinate p = er is introduced, and a 
solution in each region is sought separately in the form of inner and outer expansions. In 
constructing the asymptotic solution in the inner region, boundary conditions on the particle 
surface, Eqs. (i.5)--(1.7), are used, while in the outer region conditions at infinity are 
employed, Eq. (1.4). The unknown constants appearing in the solution are determined by the 
combination procedure [1-9]. 

By analogy to [1-9] it can be shown that in the case of translational Stokes flow over 
the sphere, Eq. (1.9), the temperature and concentration distributions on the inner surface 
of the outer region ~= (i.e., at r ~ e -I) can be represented in the form (m = I, ..., M) 

I i 'lpe~ q_ "} r = O (e-x), T := ~F ( P e o j . . . ,  PeM) r -1 ~- ~ Peo (~ - -  i) - -  ~Z :o  In Be o O (Pe~) , 
(2.1) 

. 1 )  " + 

where �9 and (~m are unknown functions to be determined in the course of solution. 

For the inner expansion of temperature and concentrations in the region ~m, and also for 
the temperature distribution within the particle, we have 

T = T (~ -I- Peo T(~'' - ; -Pe~ln Pe o T(~)~ - O (Peo), 

t = t (~ -i- Peot (~) ~- Peo~ ~" in Pe o t(~) -i- O (Peo~), ( 2 . 2 )  

c,, = c~ ) q- Pemc~ ) -{- Pe~ In Pe,, c(~ ) -{- O (Pe,~a), 

where the functions c(.~ ), T(a), and t(h) satisfy the equations 

Ac~ > = 0 ,  AT ( ~ ) - 0 ,  At ( a ) = 0  ( k = 0 , 2 ) ~  ( 2 . 3 )  

Ac~} _ ~z=r-~'3 " (~p, r-~),  AT (') _-= ~r-~J " (r  r -*) ,  At (O = 0. 

In deriving the second group of Eqs. (2.3) (at k = i) it is considered that the zero 
order terms of the inner expansion depend solely on radial coordinate r and are determined 
by a binomial of form A + Br -!, where for each cr ' TO) and t (~ there are unique constants 
A and B, which are determined from boundary conditions (1.5)--(1.8), and the conditions for 
combination with the solution in the region ~ (2.1); am, ~ = coast. 

Integrating Eq. (2.3) over the surface Sr of a sphere of radius r, we obtain 

L < c ~ ) > = 0 ,  L < T ( h ) > = 0 ,  L< tCo>= :0  ( k = 0 , 1 , 2 ) ,  ( 2 . 4 )  
1 

1 '~ t (' 

S r --1 

In deriving Eq. (2.4) it was considered that <J(~, r-l)) = 0. The general solution of 
the equations for mean Eq. (2.4) has the form 

<c~)> = .(k) ~(~)r-1 .(ki ~ ~(h),-1 <t(k)> _ a~ ~) (2.5) ~mi~-~i , (T(~)>.=~2 T~2 - , 

,,(k) ~,(h> b(~) (4) a(j :)= const).  ( k  - -  0 ,  i ,  2 ,  - , , 1~  ~',-1, 2 , a~ 

In writing the last equation of (2.5) it was considered that the solution must be finite 
within the particle, Eq. (i. 8). 

From Eqs. (2.2) and (2.5) for the full means we obtain 

t t e In Per~}, <Cm> ~--- ( ~ r n  (Peo, �9 .- J PeM) r -1 - -  "2 Pc,n--  E Pern 
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<T>= W (Peo, PeM){r-' l i Pe: lnPeo ) �9 . . ,  --  y P e  o -  ~- , 

<'> = ~ (Pe~ "" " ' PeM){ i -1"5  Pe~ --  ~ Pe~ In Pe~ " t  

(2.6) 

The form of the functions <cm> and <T> (2.6) is determined by use of the procedure 
of combination with the solution in the outer region equation (2.1) with consideration of 
the equality <~> = 0, while the form of <t> is determined by Eq. (1.5) 

Since c7~(~ T(0) and t(~ depend solely on distance from the center of the sphere, then 
for any (analytic) function f, to an accuracy of O(e ~) , the expression 

</(c~ . . . . .  cM,  T)> =/(<c1> . . . .  , <c~>, < r ~  (2 .7)  

is valid, which can be proved by direct test with consideration of Eqs. (2.2) and (2.6) and 
the properties of the operation < >. 

The mean Sherwood and Nusselt numbers are given by 

/ o r \  (2 .8)  
Sh~ = - - \ - ~ - F /  ~=~ 

Averaging boundary conditions equations (1.6) and (1.7) and using Eq. (2.6) and the prop- 
erties of Eq. (2.7), to determine the mean Sherwood and Nusselt numbers we obtain the follow- 
ing algebraic (transcendental) system of equations: 

( Sh 1 Shal Nu ) 

Nu-~ X~ h~Sh,.. 
IrL~l 

( m =  t ,  . . . , M ) ,  
(2 .9 )  

Here the last equation was obtained by substitution in boundary condition (1.7) of the expres- 
sion for fm from Eq. (1.6), and the values of Shm~ and Nu~ correspond to a purely dif- 
fusion (thermal) reaction regime (which corresponds to boundary conditions on the sphere 
surface r = i, Cm = i, and T = i for Eqs. (i.I), (1.2), and (1.4)) [1] 

i , 0 (Pe~), S h ~  = i + ~ Pe~ + ~ Pe~ In Pe~ + 
(2. lO) 

Nu ~ = i + ~ Pe o ~ y Pc0 In Pe 0 q- O (Pe~). 

Thus,  i t  has  been shown t h a t  i n  t h e  case  of  a mul t i componen t  s u r f a c e  c h e mi c a l  r e a c t i o n ,  
accompanied  by h e a t  l i b e r a t i o n ,  a t  s m a l l  P e c l e t  numbers to  d e t e r m i n e  t h e  i n t e g r a l  h e a t  and 
mass f l u x e s  of  r e a c t i n g  components  to  t he  p a r t i c l e  i t  i s  s u f f i c i e n t  t o  s o l v e  t he  a l g e b r a i c  
( t r a n s c e n d e n t a l )  sy s t em e q u a t i o n s  (2 .9 )  and ( 2 . 1 0 ) ,  which i s  s i g n i f i c a n t l y  s i m p l e r  t h a n  t h e  
original system of partial differential equations (1.1)--(1.9). 

It is evident from system (2.9), (2.10) that at small Peclet numbers the ratio of the 
thermal conductivities of the particle and surrounding fluid does not affect the integral 
characteristics of the process. A change in the parameter 6 leads only to a redistribution 
of local thermal and diffusion flows on the sphere surfaces and does not change the corre- 
sponding total fluxes. 
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System (2.9)--(2.10) 
Sherwood number: 

The results of [8] can be obtained by solving the first equation of (2.9) for M = I, 
f~ = kf. The last equation of {2.9) gives the result of [9] for M = I. 

3. Case of Surface Chemical Reaction Following Arrhenius' Law. 

We will now consider a first-order heterogeneous chemical reaction (in the presence in 
the flow of one reacting component M = i), occurring in accordance with the Arrhenius law on 
the surface of the sphere. In this case the surface reaction rate is determined by the ex- 
pression [i0] F = k0c* exp (--E/RT*). Here and below the subscript will be omitted from the con- 
centration and temperature; E is the activation energy; R is the universal gas constant; ko 
is the reaction rate constant. 

reduces to the following equation for determination of the mean 

..... ~ s,, ~e~p{-,,,(~ 1, s,, - '1 o ,  ' :  (3.1) 
Sh .... -77, ~ f  - - ~ ) , ,  - - n r ~  

(it := - -  h ,  > 0) .  

For convenience in analysis we write Eq. (3.1) in the form of a system 

�9 q -= k exp (--co/z)[]  + k exp ( - - c o / z ) ] J ;  ( 3 . 2 )  

q ' t an  q v ( z - - t )  ( z - -  t -{- aq, fan (p : a - l ) ,  ( 3 . 3 )  

q = S h / S h ~ ,  k := a k o / ( D S h , ~ ) ,  (~ -----hShr 

Now, considering the parameter k fixed, we will study the number of roots of Eq. (3.1) 
as a function of variation of the parameters 0), a ~ [0, +oo)(the angle % 0 < ~ < n/2) 
The number of roots of Eq. (3.1) is determined by the number of intersections of straight line 
(3.3), passing at an angle ~ to the z-axis in the plane z, q through the point (I, 0) with 
curve (3.2) (Fig. i). Then, depending on the value of the parameter ~ the following situa, 
tions are possible; i) at any ~[0, -~oo) system (3.2)--(3.3) has a single root q = q(m, ~); 
2) there exists an interval (o,, 02) in which for every o~ < o < o2 system (3.2)--(3.3) has 
three roots, while at the end points of the interval ~ = On (n = i, 2) there are two roots; 
in this case for every a lying outside this interval 0 ~ o < ~ or a= < ~, there is a single 
root to Eq. (3.1), ~n== arctan ar~ I. 

It can be shown that the geometric point of tangency of straight line (3.3) with curve 
(3.2) (which corresponds to two roots of Eq. (3.1)) in the plane ~o is given in parametric 

form by 

co(q) = ( t  - q ) y ~ o ' ~ ( l ) ,  a(q) = q - ~ G - ~ ( i ) ,  ( 3 . 4 )  

y = h~ {k(q -~ - -  l ) } ,  a ( ,O = a(q ,  k,  n) = ( l  - -  nq)y - -  ~. 

The limiting curve (3.4) as ~-+ oo has two branches departing to infinity; the upper 

branch asymptotically approaches the curve 

a = k-*(o-1 exp o) (r co), ( 3 . 5 )  

while the lower has the asymptote 

a = ( q . l  - -  .1) o) - -  2 q .  1 ( (o-+ co), (3.6) 

where q, < k(k + I)'* is a root of the equation G(q,, k, i) = O. 

Curve (3.4) in the plane ~a has a sharp-pointed singular point (~o, Oo), which is its 

absolute minimum, lies on the hyperbola 

D(m, a) ~ aco -- 5a  -- 4 ---- 0 (3.7) 

and is given by the value of the parameter q = qo, where qo is the root of the equation 

G(qo, k, 2) = O. 

The local behavior of curve (3.4) in the vicinity of the singular point is given by 

, ( - 1 )  ( 3  8 )  
a - -  at, .... t a n  ~' ((o - -  (%), o) ~ o~ o, t a n  ? ~ -  ( 1 / 2 )  qo - -  I ,  

(% ..... ,o (qo) = 4 ( l  - -  %) ( l  - -  2qo) -~, % = a ( q o ) = q [ ~ - - 2 .  
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In Fig. 2, in the plane ~o the behavior of Eq. (3.4) is depicted qualitatively. In the 
shaded region ~, located between the two branches of Eq. (3.4) (defined by parameter q ranges 
0 < q < qo and qo < q < q,, respectively) at a fixed value of ~ > ~o, the segment I = l(m) = 
{oi((0)~0~(o))} (shown by the heavy line in Fig. 2) gives the same values of o at which 
Eq. (3.1) has three roots. 

It can be shown that Oq,/Ok>i), Oqo/Ok>O. Therefore, upon change in the parameter k with 
consideration of Eqs. (3.5)--(3.8) the region ~ = ~(k) deforms in the following manner: The 
singular point, lying on the parabola equations (3.7), moves downward and to the right upon 
increase in k, the slope y with respect to the ~ axis then decreasing; the asymptotic curve 
equation (3.5), corresponding to the maximum possible values of the parameter o, approaches 
the m axis in inverse proportion to the value of k; the second asymptote, Eq. (3.6), ap- 
proaches the m axis, and its point of intersection with the m axis remains in the right semi- 
plane, moving to the right from zero. 

In Fig. 2, dashed lines I and II correspond to asymptotic curves of Eqs. (3.5) and (3.6), 
the arrows on the boundary of the region ~ indicate the direction of motion of the points of 
curve (3.4) with increasing k, the arrows on the hyperbola D(m, ~) = 0 show the direction of 
motion of the singular point (~o, oo) with increase in k, and the arrows on the m axis 
show the direction of motion of the points of intersection of asymptote (3.6) with the 
axis with increasing k, the coordinate of the intersection point always being more than two. 

From system (3.2)--(3.3) it is evident that the following limiting relationships exist: 

~ O. q - ,-  (1 + k-~e~) -~, ~ --+ o o ,  q ~ k(k + l)  -~. ( 3 . 9 )  

With decrease in particle velocity the mean Sherwood and Nusselt numbers corresponding 
to a diffusion reaction regime (2.10) decrease. Then, as follows from Eq. (3.1), the point 
A, corresponding to a high temperature reaction regime, moves to the left along curve (3.2) 
to point B (see Fig. i). After passage through B the high temperature regime can no longer 
exist, so that B "jumps" from the upper portion of the curve to the lower at point C, which 
now corresponds to a low-temperature reaction regime on the particle surface. 

It is evident from Eq. (3.2) that the mean Sherwood number decreases with increase in 
heat of reaction h. 

4. Some Remarks. 

From the equations for mean Sherwood and Nusselt numbers, Eqs. (2.9) and (2.10), it is 
evident that these quantities do not depend on the ratio of the thermal conductivity coeffi- 
cients of particle and fluid 6. We will show that the last equation of (2.9) is valid in the 
most general case of arbitrary particle surface form s and flow field at any Peclet numbers 
0~Pem<oo. 

In fact, since the temperature field t within the particle satisfies Laplace equation 
(1.3), then for any closed contour y lying within the particle, the surface integral of a~On 
(where 0/0n is the derivative with respect to the normal to the surface) over y is equal to 
zero. Now, fixing y and F and considering the continuity of the corresponding integral func- 
tion over y, we find that the integral over the particle surface F of OrlOn is also equal to 
zero. With consideration of this, by integrating boundary condition (1.7) over the particle 
surface and using Eq. (1.6), we obtain the last equation of Eq. (2.9), which expresses the 
law of conservation of energy. In this sense, the parameter 6, which figures in boundary 
condition (1.7), is of little significance. 

The last equation of (2.9) permits determination of the integral thermal characteristics 
of the problem in those cases in which the total diffusion flux on the particle is known. 
It is most simple to use Eq. (2.9) when the surface reaction rate does not depend on tempera- 
ture, f = f(c), M = i. Under such conditions diffusion problem (i.i), (1.4), (1.6) can be 
solved independently of the thermal problem, after which the calculated mean Sherwood number 
and Eq. (2.9) are used to calculate the mean Nusselt number. Then in the special case of 
small Peclet numbers it is possible to use the results of [2, 6], obtained for the case of 
total absorption of matter on the reacting surface and a first-order chemical reaction f(c) = 
kc, occuring on the surface of a particle of arbitrary form in the presence of a translational 
Stokes flow.. For the thermal Nusselt number, from the last equation of Eq. (2.9) we obtain 

I ~ ~ S h ~ { F . i ~ P e 2 l n P e ~  , O ( p e ~ )  ' N ~ = - - h  S h ~ - - - $ S h ~ P e - ~  T ' ' j 
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Nu=:  . VTdF, F =  : ~ l t ' i '  i = : ~ ,  P e : - ~ u  
Y 

where U i s  the  f l o w  v e l o c i t y  a t  i n f i n i t y ;  a i s  t he  r a d i u s  o f  a s p h e r e  o f  e q u i v a l e n t  volume;  
F i s  a d i m e n s i o n l e s s  v e c t o r ,  e q u a l  to  t he  r a t i o  o f  the  r e s i s t a n c e  f o r c e  F ~ o f  the  g i v e n  p a r -  
t i c l e  t o  the  v a l u e  o f  the  S tokes  r e s i s t a n c e  f o r c e  o f  a s o l i d  s p h e r e  o f  r a d i u s  a ;  ~ i s  t he  
dynamic v i s c o s i t y  o f  the  f l u i d ;  8ho i s  the  Sherwood number c o r r e s p o n d i n g  to  the  mass exchange  
o f  a p a r t i c l e  a t  r e s t  w i t h  an immobi le  medium ( U ~ 0 )  in  t he  ease  i n  which a f i r s t  o r d e r  
c h e m i c a l  r e a c t i o n  o c c u r s o n  t h e  p a r t i c l e  s u r f a c e  

The l a s t  f o r m u l a  o f  Eq. (2 .9 )  i s  t hus  a g e n e r a l i z a t i o n  o f  the  r e s u l t s  o f  [9] t o  the  case  
o f  r e a c t i n g  p a r t i c l e s  o f  a r b i t r a r y  form and f i n i t e  r e a c t i o n  r a r e .  

The a u t h o r  w i shes  t o  t hank  Yu. P. Gupalo ,  Yu. S. R y z a n t s e v ,  and Yu. A. Se rgeev  f o r  t h e i r  
kind evaluation. 
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